This Assessment has been compiled in accordance with the provisions of the *Industrial Chemicals (Notification and Assessment) Act 1989* (the Act) and Regulations. This legislation is an Act of the Commonwealth of Australia. The National Industrial Chemicals Notification and Assessment Scheme (NICNAS) is administered by the Department of Health, and conducts the risk assessment for public health and occupational health and safety. The assessment of environmental risk is conducted by the Department of the Environment and Energy.

This Public Report is available for viewing and downloading from the NICNAS website or available on request, free of charge, by contacting NICNAS. For requests and enquiries please contact the NICNAS Administration Coordinator at:

Street Address: Level 7, 260 Elizabeth Street, SURRY HILLS NSW 2010, AUSTRALIA.
Postal Address: GPO Box 58, SYDNEY NSW 2001, AUSTRALIA.
TEL: + 61 2 8577 8800
FAX: + 61 2 8577 8888
Website: www.nicnas.gov.au

Director
NICNAS
TABLE OF CONTENTS

SUMMARY ... 3
CONCLUSIONS AND REGULATORY OBLIGATIONS .. 3
ASSESSMENT DETAILS ... 5
 1. APPLICANT AND NOTIFICATION DETAILS .. 5
 2. IDENTITY OF CHEMICAL ... 5
 3. COMPOSITION ... 5
 4. PHYSICAL AND CHEMICAL PROPERTIES .. 6
 5. INTRODUCTION AND USE INFORMATION .. 7
 6. HUMAN HEALTH IMPLICATIONS .. 8
 6.1. Exposure Assessment ... 8
 6.1.1. Occupational Exposure .. 8
 6.1.2. Public Exposure .. 8
 6.2. Human Health Effects Assessment ... 10
 6.3. Human Health Risk Characterisation .. 11
 6.3.1. Occupational Health and Safety .. 11
 6.3.2. Public Health .. 11
 7. ENVIRONMENTAL IMPLICATIONS ... 11
 7.1. Environmental Exposure & Fate Assessment ... 11
 7.1.1. Environmental Exposure .. 11
 7.1.2. Environmental Fate ... 12
 7.1.3. Predicted Environmental Concentration (PEC) ... 12
 7.2. Environmental Effects Assessment .. 13
 7.2.1. Predicted No-Effect Concentration .. 13
 7.3. Environmental Risk Assessment .. 13
APPENDIX A: PHYSICAL AND CHEMICAL PROPERTIES .. 14
APPENDIX B: TOXICOLOGICAL INVESTIGATIONS .. 16
 B.1. Acute toxicity – oral .. 16
 B.2. Acute toxicity – dermal ... 16
 B.3. Irritation – skin ... 17
 B.4. Irritation – eye .. 17
 B.5. Skin sensitisation ... 18
 B.6. Skin sensitisation ... 19
 B.7. Repeat dose toxicity .. 20
 B.8. Genotoxicity – bacteria .. 21
 B.9. Genotoxicity – in vitro mammalian chromosome aberration test ... 22
APPENDIX C: ENVIRONMENTAL FATE AND ECOTOXICOLOGICAL INVESTIGATIONS 24
 C.1. Environmental Fate .. 24
 C.1.1. Ready biodegradability ... 24
 C.2. Ecotoxicological Investigations .. 24
 C.2.1. Acute toxicity to fish ... 24
 C.2.2. Acute toxicity to aquatic invertebrates ... 25
 C.2.3. Algal growth inhibition test .. 26
 C.2.4. Inhibition of microbial activity ... 27
BIBLIOGRAPHY ... 28
CONCLUSIONS AND REGULATORY OBLIGATIONS

Hazard classification

Based on the available information, the notified chemical is not recommended for classification according to the *Globally Harmonised System of Classification and Labelling of Chemicals* (GHS), as adopted for industrial chemicals in Australia.

The environmental hazard classification according to the *Globally Harmonised System of Classification and Labelling of Chemicals* (GHS) is presented below. Environmental classification under the GHS is not mandated in Australia and carries no legal status but is presented for information purposes.

<table>
<thead>
<tr>
<th>Hazard classification</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic aquatic toxicity (Category 2)</td>
<td>H411: Toxic to aquatic life with long lasting effects</td>
</tr>
</tbody>
</table>

Human health risk assessment

Under the conditions of the occupational settings described, the notified chemical is not considered to pose an unreasonable risk to the health of workers.

When used in the proposed manner, the notified chemical is not considered to pose an unreasonable risk to public health.

Environmental risk assessment

On the basis of the PEC/PNEC ratio and the assessed use pattern, the notified chemical is not considered to pose an unreasonable risk to the environment.

Recommendations

CONTROL MEASURES

Occupational Health and Safety

- A person conducting a business or undertaking at a workplace should implement the following safe work practices to minimise occupational exposure to the notified chemical during reformulation processes:
 - Avoid eye contact

- A copy of the SDS should be easily accessible to employees.

- If products and mixtures containing the notified chemical is classified as hazardous to health in accordance with the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) as adopted for industrial chemicals in Australia, workplace practices and control procedures consistent with provisions of State and Territory hazardous substances legislation should be in operation.
Disposal

- Where reuse or recycling are not appropriate, dispose of the notified chemical in an environmentally sound manner in accordance with relevant Commonwealth, state, territory and local government legislation.

Emergency procedures

- Spills or accidental release of the notified chemical should be handled by physical containment, collection and subsequent safe disposal.

Regulatory Obligations

Secondary Notification

This risk assessment is based on the information available at the time of notification. The Director may call for the reassessment of the chemical under secondary notification provisions based on changes in certain circumstances. Under Section 64 of the *Industrial Chemicals (Notification and Assessment) Act (1989)* the notifier, as well as any other importer or manufacturer of the notified chemical, have post-assessment regulatory obligations to notify NICNAS when any of these circumstances change. These obligations apply even when the notified chemical is listed on the Australian Inventory of Chemical Substances (AICS).

Therefore, the Director of NICNAS must be notified in writing within 28 days by the notifier, other importer or manufacturer:

1. Under Section 64(1) of the Act; if
 - the importation volume exceeds one tonne per annum notified chemical;

or

2. Under Section 64(2) of the Act; if
 - the function or use of the chemical has changed from fragrance ingredient, or is likely to change significantly;
 - the amount of chemical being introduced has increased, or is likely to increase, significantly;
 - the chemical has begun to be manufactured in Australia;
 - additional information has become available to the person as to an adverse effect of the chemical on occupational health and safety, public health, or the environment.

The Director will then decide whether a reassessment (i.e. a secondary notification and assessment) is required.

Safety Data Sheet

The SDS of the notified chemical provided by the notifier was reviewed by NICNAS. The accuracy of the information on the SDS remains the responsibility of the applicant.
1. **APPLICANT AND NOTIFICATION DETAILS**

APPLICANT
Symrise Pty Ltd (ABN: 67 000 880 946)
168 South Creek Road
DEE WHY NSW 2099

NOTIFICATION CATEGORY
Limited-small volume: Chemical other than polymer (1 tonne or less per year)

EXEMPT INFORMATION (SECTION 75 OF THE ACT)
No details are claimed exempt from publication.

VARIATION OF DATA REQUIREMENTS (SECTION 24 OF THE ACT)
No variation to the schedule of data requirements is claimed.

PREVIOUS NOTIFICATION IN AUSTRALIA BY APPLICANT
Low Volume Chemical Permit (NICNAS)

NOTIFICATION IN OTHER COUNTRIES
EU (2008), Philippines (2016)

2. **IDENTITY OF CHEMICAL**

MARKETING NAME
SymRoxane

CAS NUMBER
676125-00-1

CHEMICAL NAME
2H-2,4a-Methanonaphthalene, 1,3,4,5,6,7-hexahydro-7-methoxy-1,1,5,5-tetramethyl-

MOLECULAR FORMULA
C_{16}H_{26}O

STRUCTURAL FORMULA

![Structural Formula Image]

MOLECULAR WEIGHT
234.38 g/mol

ANALYTICAL DATA
Reference NMR, IR, GC-MS and UV spectra were provided.

3. **COMPOSITION**

DEGREE OF PURITY
~95%
The notified chemical is comprised of the following isomers:

![Chemical Structure](image)

(65-80%)

Relative stereochemistry

2H-2,4a-Methanonaphthalene, 1,3,4,5,6,7-hexahydro-7-methoxy-1,1,5,5-tetramethyl-, (2S,4aR,7R)-rel

(15-25%)

Relative stereochemistry

2H-2,4a-Methanonaphthalene, 1,3,4,5,6,7-hexahydro-7-methoxy-1,1,5,5-tetramethyl-, (2S,4aR,7S)-rel

IMPURITIES/RESIDUAL MONOMERS

The notified chemical contains three impurities by GC-MS at concentrations of 0.57%, 1.08% and 2.5%. The impurities have not been identified.

ADDITIVES/ADJUVANTS

None

4. PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE AT 20 °C AND 101.3 kPa: Clear liquid

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Data Source/Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Point/Freezing Point</td>
<td>< -80 °C</td>
<td>Measured</td>
</tr>
<tr>
<td>Boiling Point</td>
<td>287 - 288.5 °C at 101.3 kPa</td>
<td>Measured</td>
</tr>
<tr>
<td>Density</td>
<td>970 kg/m³ at 20 °C</td>
<td>Measured</td>
</tr>
<tr>
<td>Vapour Pressure</td>
<td>4.2×10⁻³ kPa at 25 °C</td>
<td>Measured</td>
</tr>
<tr>
<td>Water Solubility</td>
<td>6.61 x 10⁻³ g/L at 20 °C</td>
<td>Measured</td>
</tr>
<tr>
<td>Hydrolysis as a Function of pH</td>
<td>Stable at pH 7 and pH 9</td>
<td>Measured</td>
</tr>
<tr>
<td></td>
<td>At pH 4 t½ = < 1 day at 25°C</td>
<td></td>
</tr>
<tr>
<td>Partition Coefficient (n-octanol/water)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
log Pow = 4.51 at 21.5 ± 1 °C | Measured |
| Adsorption/Desorption |
log Koc = 3.85 - 4.99 at 21.5 °C | Measured |
| Dissociation Constant | Not determined | No dissociable functionality|
| Flash Point | 134 °C at 101.3 kPa | Measured |
| Flammability | Not determined | Not expected to be flammable based on measured flash point |
| Autoignition Temperature | 235 °C | Measured |
| Explosive Properties | Not determined | Contains no functional groups that would imply explosive properties |
| Oxidising Properties | Not determined | Contains no functional groups that would imply oxidising properties |

PUBLIC REPORT: LTD/2019

Page 6 of 29
DISCUSSION OF PROPERTIES
For full details of tests on physical and chemical properties, refer to Appendix A.

Reactivity
The notified chemical is expected to be stable under normal conditions of use.

Physical hazard classification
Based on the submitted physico-chemical data depicted in the above table, the notified chemical is not recommended for hazard classification according to the *Globally Harmonised System of Classification and Labelling of Chemicals (GHS)*, as adopted for industrial chemicals in Australia.

5. INTRODUCTION AND USE INFORMATION

MODE OF INTRODUCTION OF NOTIFIED CHEMICAL (100%) OVER NEXT 5 YEARS
The notified chemical will not be manufactured in Australia. The notified chemical will be imported into Australia mostly as a component of fragrance oil at ≤ 50% concentration. The notified chemical may also be imported into Australia in its neat form or as a component of finished consumer products such as fine fragrances, other cosmetic products and household cleaning products at ≤ 7.5% concentration.

MAXIMUM INTRODUCTION VOLUME OF NOTIFIED CHEMICAL (100%) OVER NEXT 5 YEARS

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonnes</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
</tr>
</tbody>
</table>

PORT OF ENTRY
Sydney

TRANSPORTATION AND PACKAGING
The notified chemical will be imported as a component of finished products at a concentration of ≤ 7.5% packed in containers suitable for retail sale; in neat form in 25 kg closed blue steel barrels or as fragrance oil at ≤ 50% concentration in 30 L and 216 L tightly closed lacquered metal drums and 30 L HDPE/EVOH canisters. Within Australia the drums will be transported by road to the warehouse for storage and later distributed to the industrial customers by road. Finished consumer products containing the notified chemical will be transported primarily by road to retail stores in packages suitable for retail sale.

USE
The notified chemical will be used as a fragrance ingredient in cosmetic and household products. The proposed usage concentration of the notified chemical in various consumer products will be:

<table>
<thead>
<tr>
<th>Finished Consumer Product</th>
<th>Final Concentration of the Notified Chemical (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine fragrance</td>
<td>0.0013 – 7.5</td>
</tr>
<tr>
<td>Other cosmetic products</td>
<td>0.00014 – 0.2</td>
</tr>
<tr>
<td>Household cleaning products</td>
<td>0.00001 – 0.25</td>
</tr>
</tbody>
</table>

OPERATION DESCRIPTION
Reformulation of the notified chemical or fragrance mixtures containing the notified chemical at ≤ 50% concentration into finished consumer goods may vary depending of the type of product and may involve both automated and manual transfer steps. Typically, reformulation processes may incorporate blending operations that are highly automated and occur in a fully enclosed/contained environment, followed by automated filling of the reformulated end-use products into containers of various sizes.

End-use products containing the notified chemical (at ≤ 7.5% concentration) will be used by consumers and professionals such as hairdressers, beauticians and cleaners. Depending on the nature of the product, these could be applied in a number of ways, such as by hand, using an applicator or sprayed.
6. HUMAN HEALTH IMPLICATIONS

6.1. Exposure Assessment

6.1.1. Occupational Exposure

<table>
<thead>
<tr>
<th>Category of Worker</th>
<th>Exposure Duration (hours/day)</th>
<th>Exposure Frequency (days/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport and warehouse</td>
<td>None</td>
<td>Incidental</td>
</tr>
<tr>
<td>Mixer</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Drum handling</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Drum cleaning/washing</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Maintenance</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Quality control</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Packaging</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>End users (professionals)</td>
<td>1-8</td>
<td>200</td>
</tr>
</tbody>
</table>

EXPOSURE DETAILS

Transport and storage
Transport, storage and warehouse workers may come into contact with the notified chemical in its neat form or at ≤ 50% concentration in fragrance oil formulation or at ≤ 7.5% concentration (in final formulated products), only in the event of accidental rupture of containers. If such an event occurs, workers may be exposed through dermal, ocular or perhaps inhalation exposure. Exposure should be minimised through the stated use by the notifier of personal protective equipment (PPE) including protective coveralls, impervious gloves and eye protection.

Reformulation
During reformulation, dermal, ocular and perhaps inhalation exposure of workers to the notified chemical in its neat form or at ≤ 50% concentration may occur during handling of drums, during weighing and transfer stages, blending, quality control analysis and cleaning and maintenance of equipment. The notifier states that exposure is expected to be minimised through the use of mechanical ventilation and/or enclosed systems, and through the use of PPE such as protective clothing, eye protection and impervious gloves.

End-use
Exposure to the notified chemical in end-use products (at ≤ 7.5% concentration) may occur in professions where the services provided involve the application of cosmetics to clients (e.g. hairdressers and workers in beauty salons), or the use of household products in the cleaning industry. The principal route of exposure will be dermal, while ocular and inhalation exposure is also possible. Such professionals may use some PPE to minimise repeated exposure, and good hygiene practices are expected to be in place. If PPE is used, exposure of such workers is expected to be of a similar or lesser extent than that experienced by consumers using the products containing the notified chemical.

6.1.2. Public Exposure

There will be widespread and repeated exposure of the public to the notified chemical at ≤ 7.5% concentration through the use of a wide range of cosmetic and household products. The main route of exposure will be dermal, while ocular and inhalation exposure is also possible, particularly if products are applied by spray.

Data on typical use patterns of product categories in which the notified chemical may be used are shown in the following tables and these are based on information provided in various literatures (SCCS, 2010; Cadby et al., 2002; ACI, 2010; Loretz et al., 2006). For the purposes of the exposure assessment, Australian use patterns for the various product categories are assumed to be similar to those in Europe. A dermal absorption (DA) rate of 100% was assumed for the notified chemical for calculation purposes. For the inhalation exposure assessment, a 2-zone approach was used (Steiling et al., 2014; Rothe et al., 2011; Earnest, Jr, 2009). An adult inhalation rate of 20 m³/day (enHealth, 2012) was used and it was conservatively assumed that the fraction of the notified chemical inhaled is 50%. A lifetime average female body weight (BW) of 64 kg (enHealth, 2012) was used for calculation purposes.
Cosmetic products (Dermal exposure):

<table>
<thead>
<tr>
<th>Product type</th>
<th>Amount (mg/day)</th>
<th>C (%)</th>
<th>RF (unitless)</th>
<th>Daily systemic exposure (mg/kg bw/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body lotion</td>
<td>7820</td>
<td>0.2</td>
<td>1</td>
<td>0.2444</td>
</tr>
<tr>
<td>Face cream</td>
<td>1540</td>
<td>0.2</td>
<td>1</td>
<td>0.0481</td>
</tr>
<tr>
<td>Hand cream</td>
<td>2160</td>
<td>0.2</td>
<td>1</td>
<td>0.0675</td>
</tr>
<tr>
<td>Fine fragrances</td>
<td>750</td>
<td>7.5</td>
<td>1</td>
<td>0.8789</td>
</tr>
<tr>
<td>Deodorant spray</td>
<td>1430</td>
<td>0.2</td>
<td>1</td>
<td>0.0469</td>
</tr>
<tr>
<td>Shampoo</td>
<td>10460</td>
<td>0.2</td>
<td>0.01</td>
<td>0.0033</td>
</tr>
<tr>
<td>Conditioner</td>
<td>3920</td>
<td>0.2</td>
<td>0.01</td>
<td>0.0012</td>
</tr>
<tr>
<td>Shower gel</td>
<td>18670</td>
<td>0.2</td>
<td>0.01</td>
<td>0.0058</td>
</tr>
<tr>
<td>Hand soap</td>
<td>20000</td>
<td>0.2</td>
<td>0.01</td>
<td>0.0063</td>
</tr>
<tr>
<td>Hair styling products</td>
<td>4000</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0125</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>1.3149</td>
</tr>
</tbody>
</table>

C = maximum intended concentration of notified chemical; RF = retention factor.

Daily systemic exposure = (Amount × C × RF × DA)/BW

Household products (Indirect dermal exposure - from wearing clothes):

<table>
<thead>
<tr>
<th>Product type</th>
<th>Amount (g/use)</th>
<th>C (%)</th>
<th>Product Retained (PR) (%)</th>
<th>Percent Transfer (PT) (%)</th>
<th>Daily systemic exposure (mg/kg bw/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laundry liquid</td>
<td>230</td>
<td>0.25</td>
<td>0.25</td>
<td>10</td>
<td>0.0085</td>
</tr>
<tr>
<td>Fabric softener</td>
<td>90</td>
<td>0.25</td>
<td>0.25</td>
<td>10</td>
<td>0.0033</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0119</td>
</tr>
</tbody>
</table>

C = maximum intended concentration of notified chemical

Daily systemic exposure = (Amount × C × PR × PT × DA)/BW

Household products (Direct dermal exposure):

<table>
<thead>
<tr>
<th>Product type</th>
<th>Frequency (use/day)</th>
<th>C (%)</th>
<th>Contact Area (cm²)</th>
<th>Product Use C (g/cm³)</th>
<th>Film Thickness (cm)</th>
<th>Time Scale Factor</th>
<th>Daily systemic exposure (mg/kg bw/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laundry liquid</td>
<td>1.43</td>
<td>0.25</td>
<td>1980</td>
<td>0.01</td>
<td>0.01</td>
<td>0.007</td>
<td>0.0001</td>
</tr>
<tr>
<td>Dishwashing liquid</td>
<td>3</td>
<td>0.25</td>
<td>1980</td>
<td>0.0093</td>
<td>0.01</td>
<td>0.03</td>
<td>0.0006</td>
</tr>
<tr>
<td>All-purpose cleaner</td>
<td>1</td>
<td>0.25</td>
<td>1980</td>
<td>1</td>
<td>0.01</td>
<td>0.007</td>
<td>0.0054</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0061</td>
</tr>
</tbody>
</table>

C = maximum intended concentration of notified chemical

Daily systemic exposure = (Frequency × C × Contact area × Product Use Concentration × Film Thickness on skin × Time Scale Factor × DA)/BW

Hairspray (Inhalation exposure):

<table>
<thead>
<tr>
<th>Product type</th>
<th>Amount (g/use)</th>
<th>Inhale rate (%)</th>
<th>Exposure duration zone 1 (min)</th>
<th>Exposure duration zone 2 (m³/day)</th>
<th>Fraction inhaled (%)</th>
<th>Volume zone 1 (m³)</th>
<th>Volume zone 2 (m³)</th>
<th>Daily systemic exposure (mg/kg bw/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hairspray</td>
<td>20</td>
<td>0.2</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>50</td>
<td>1</td>
<td>0.0064</td>
</tr>
</tbody>
</table>

C = maximum intended concentration of notified chemical

Total daily systemic exposure = Daily systemic exposure in Zone 1 [(amount × C × inhalation rate × exposure duration (zone 1) × fraction inhaled)/(volume (zone 1) × body weight)] + Daily systemic exposure in Zone 2 [(amount × C × inhalation rate × exposure duration (zone 2) × fraction inhaled)/(volume (zone 2) × body weight)]
The worst case scenario estimation using these assumptions is for a person who is a simultaneous user of all products listed in the above tables that contain the notified chemical at the maximum intended concentrations specified by the notifier in various product types. This would result in a combined internal dose of 1.3393 mg/kg bw/day for the notified chemical. It is acknowledged that inhalation exposure to the notified chemical from use of other cosmetic and household products (in addition to hair spray) may occur. However, it is considered that the combination of the conservative hair spray inhalation exposure assessment parameters, and the aggregate exposure from use of the dermally applied products, which assumes a conservative 100% absorption rate, is sufficiently protective to cover additional inhalation exposure to the notified chemical from use of other spray cosmetic and household products with low exposure.

6.2. Human Health Effects Assessment

The results from toxicological investigations conducted on the notified chemical are summarised in the following table. For full details of the studies, refer to Appendix B.

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Result and Assessment Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat, acute oral toxicity</td>
<td>LD50 > 2,500 mg/kg bw; low toxicity</td>
</tr>
<tr>
<td>Rat, acute dermal toxicity</td>
<td>LD50 > 2,000 mg/kg bw; low toxicity</td>
</tr>
<tr>
<td>Rabbit, skin irritation</td>
<td>not irritating</td>
</tr>
<tr>
<td>Rabbit, eye irritation</td>
<td>slightly irritating</td>
</tr>
<tr>
<td>Guinea pig, skin sensitisation – adjuvant test</td>
<td>no evidence of sensitisation at up to 100%</td>
</tr>
<tr>
<td>Guinea pig, skin sensitisation – adjuvant test</td>
<td>no evidence of sensitisation at up to 100%</td>
</tr>
<tr>
<td>Rat, repeat dose oral toxicity – 28 days</td>
<td>NOAEL > 1,000 mg/kg bw/day</td>
</tr>
<tr>
<td>Mutagenicity – bacterial reverse mutation</td>
<td>non mutagenic</td>
</tr>
<tr>
<td>Genotoxicity – in vitro mammalian chromosome</td>
<td>non genotoxic</td>
</tr>
</tbody>
</table>

Toxicokinetics

Given the low molecular weight (234.38 g/mol) the notified chemical may be absorbed across the respiratory or gastrointestinal tract. However, based on the low water solubility (6.61 mg/L at 20 °C) and high partition coefficient (log Pow = 4.51 at 21.5 °C), indicating a reasonably high lipophilicity, percutaneous absorption is expected to be limited.

Acute toxicity

The notified chemical was found to be of low acute oral and dermal toxicity in rats.

No studies were submitted for acute inhalation toxicity of the notified chemical.

Irritation and sensitisation

Based on studies conducted in rabbits, the notified chemical is not irritating to skin and slightly irritating to eyes.

In the eye irritation study, moderate conjunctival irritation was noted in all animals 1 hour after treatment. This was reduced to minimal conjunctival irritation at the 24 hour time point. By the 48 hour time point, all treated eyes appeared normal. No corneal or iridial effects were noted during the study.

Two guinea pig maximisation tests for skin sensitisation were submitted for the notified chemical.

In the first study, discrete or patchy erythema (grade 1) was observed in two animals during challenge at 75% concentration and in three animals at 100% concentration at the 24 hour observation. These skin reactions were not apparent at the 48 hour observation and were therefore not attributed to contact sensitisation by the study authors. In the second study, no signs of allergic skin reactions were observed at challenged with 75% and 100% topical concentrations. The notified chemical is therefore not considered a skin sensitiser.

Repeated dose toxicity

In a 28-day repeated dose oral toxicity study in rats, the notified chemical was administered daily by gavage at dose levels of 100, 300, and 1,000 mg/kg bw/day. A treatment related increase in absolute and relative liver weights were observed in males and females treated at 300 mg/kg bw/day or 1,000 mg/kg bw/day (statistically significant for the relative liver weights in males at 300 mg/kg bw/day [20.6% increase] and 1,000 mg/kg bw/day [24.1% increase], and in females at 1,000 mg/kg bw/day [25.1% increase]). These findings, however, were not accompanied by associated clinical pathology or histopathological findings and therefore not considered to be toxicologically significant.
Hyaline droplet formation was observed in the tubular epithelium of males at all dose levels. The study authors attributed this effect to an excessive accumulation of alpha-2-globulin in the P2 segment cells of renal proximal tubules, resulting in droplets formation as a manifestation of protein overload. This phenomenon is rat specific and therefore not relevant to humans.

Based on the absence of toxicologically significant effects at any dose tested, the No Observed Adverse Effect Level (NOAEL) is established as greater than 1,000 mg/kg bw/day.

Mutagenicity/Genotoxicity
The notified chemical was negative in a bacterial reverse mutation assay and in an *in vitro* chromosomal aberration test in human lymphocytes.

Health hazard classification
Based on the available information, the notified chemical is not recommended for classification according to the *Globally Harmonised System of Classification and Labelling of Chemicals (GHS)*, as adopted for industrial chemicals in Australia.

6.3. Human Health Risk Characterisation

6.3.1. Occupational Health and Safety
Based on the toxicological information provided, the notified chemical is of low hazard with potential for slight eye irritation.

Reformulation
During reformulation, workers may be at risk of slight eye irritation effects. The notifier anticipates that worker exposure will be limited through the use of engineering controls such as enclosed systems, automated processes and mechanical ventilation. The use of appropriate PPE (coveralls, imperious gloves and eye protection) will also be used to limit worker exposure.

End-use
Workers involved in professions where the services provided involve the application of cosmetic and household products containing the notified chemical to clients (*e.g.*, hairdressers, beauty salon workers and cleaners) or the use of household products in the cleaning industry may be exposed to the notified chemical at ≤ 7.5% concentration. Such professionals may use PPE to minimise repeated exposure, and good hygiene practices are expected to be in place. If PPE is used, the risk to such workers is expected to be of a similar or lesser extent than that experienced by consumers using the various products containing the notified chemical.

Therefore, under the conditions of the occupational settings described, the notified chemical is not considered to pose an unreasonable risk to the health of workers.

6.3.2. Public Health
Based on the toxicological information provided, the notified chemical is of low hazard except for slight eye irritation. At the proposed use concentration (≤ 7.5%) in cosmetics and household products, eye irritation is not expected.

Therefore, the risk associated with use of the notified chemical at ≤ 7.5% concentration in cosmetics and household cleaning products is not considered to be unreasonable.

7. ENVIRONMENTAL IMPLICATIONS

7.1. Environmental Exposure & Fate Assessment

7.1.1. Environmental Exposure

RELEASE OF CHEMICAL AT SITE
The notified chemical will be imported neat or as a component of fragrance formulations, for reformulation into finished cosmetic formulations and household products. There is unlikely to be any significant release of the notified chemical to the environment from transport and storage, except in the case of accidental spills and leaks. In the event of spills, the products containing the notified chemical are expected to be collected with adsorbents, and disposed of to landfill in accordance with local government regulations.
The reformulation process will involve blending operations that will be highly automated, and is expected to occur within a fully enclosed environment. Therefore, significant release of the notified chemical from this process to the environment is not expected. The process will be followed by automated filling of the formulated products into containers of various sizes suitable for retail and end-use. Waste containing the notified chemical generated during reformulation includes equipment wash water, residues in empty import containers and spilt materials. It is estimated by the notifier that up to 1% of the import volume of the notified chemical (or up to 8 kg) may be released from reformulation processes. These will be collected and released to on-site waste water treatment processes, or released to sewers in a worst case scenario. Empty import containers are expected to be recycled or disposed of to landfill.

RELEASE OF CHEMICAL FROM USE

The notified chemical is expected to be released to the aquatic compartment through sewers during its use in various cosmetic formulations and household products.

RELEASE OF CHEMICAL FROM DISPOSAL

A small proportion of the notified chemical may remain in end-use containers once the consumer products are used up. Wastes and residues of the notified chemical in empty containers are likely to either share the fate of the container and be disposed of to landfill, or be released to the sewer system when containers are rinsed before recycling through an approved waste management facility.

7.1.2. Environmental Fate

Following its use in cosmetic formulations and household products in Australia, the majority of the notified chemical will be released to sewer after use. Based on its low water solubility (6.61 mg/L) and high calculated adsorption coefficient (log \(K_{OC} = 3.85 - 4.99 \)), most of the notified chemical released to sewer is expected to be removed at sewage treatment process by partitioning to sludge or sediment. Limited amount of the notified chemical remaining in effluent from sewage treatment plants may enter to surface waters.

The notified chemical is highly volatile from water (vapour pressure = \(2.9 \times 10^{-3}\) kPa at 20 °C and Henry’s Law constant of 104 Pa m³/mole) and is expected to volatilise to air during sewage treatment. The half-life of the notified chemical in air is calculated to be 1.18 hours, based on reactions with hydroxyl radicals (AOPWIN v1.92; US EPA, 2011). Therefore, the notified chemical is not expected to persist in the air compartment.

Based on the result of biodegradability study, the notified chemical is not considered readily biodegradable (24.8% in 28 days). For details of the environmental fate studies, please refer to Appendix C.

The notified chemical has the potential to be bioaccumulative based on its partition coefficient (log \(K_{ow} = 4.51 \)), small molecular size and lack of ready biodegradability. However, the notified chemical is not expected to be released to surface waters in significant quantities.

The notified chemical in water, landfill, soil, and sludge is expected to eventually degrade through biotic and abiotic processes to form water and oxides of carbon.

7.1.3. Predicted Environmental Concentration (PEC)

The predicted environmental concentration (PEC) has been calculated to assume a worst case scenario, with 100% release of the notified chemical into sewer systems nationwide and no removal within sewage treatment plants (STPs).

<table>
<thead>
<tr>
<th>Predicted Environmental Concentration (PEC) for the Aquatic Compartment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Annual Import/Manufactured Volume</td>
<td>1,000 kg/year</td>
</tr>
<tr>
<td>Proportion expected to be released to sewer</td>
<td>100%</td>
</tr>
<tr>
<td>Annual quantity of chemical released to sewer</td>
<td>1,000 kg/year</td>
</tr>
<tr>
<td>Days per year where release occurs</td>
<td>365 days/year</td>
</tr>
<tr>
<td>Daily chemical release:</td>
<td>2.74 kg/day</td>
</tr>
<tr>
<td>Water use</td>
<td>200 L/person/day</td>
</tr>
<tr>
<td>Population of Australia (Millions)</td>
<td>24,386 million</td>
</tr>
<tr>
<td>Removal within STP</td>
<td>0%</td>
</tr>
<tr>
<td>Daily effluent production:</td>
<td>4,877 ML</td>
</tr>
<tr>
<td>Dilution Factor - River</td>
<td>1.0</td>
</tr>
<tr>
<td>Dilution Factor - Ocean</td>
<td>10.0</td>
</tr>
</tbody>
</table>
PEC - River: 0.56 µg/L
PEC - Ocean: 0.06 µg/L

STP effluent re-use for irrigation occurs throughout Australia. The agricultural irrigation application rate is assumed to be 1000 L/m²/year (10 ML/ha/year). The notified chemical in this volume is assumed to infiltrate and accumulate in the top 10 cm of soil (density 1500 kg/m³). Using these assumptions, irrigation with a concentration of 0.56 µg/L may potentially result in a soil concentration of approximately 0.0037 mg/kg. Assuming accumulation of the notified chemical in soil for 5 and 10 years under repeated irrigation, the concentration of notified chemical in the applied soil in 5 and 10 years may be approximately 0.018 mg/kg and 0.037 mg/kg, respectively.

7.2. Environmental Effects Assessment

The results from an ecotoxicological investigation conducted on the notified chemical are summarised in the table below. Details of this study can be found in Appendix C.

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Result</th>
<th>Assessment Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish Toxicity</td>
<td>96 h LC50 = 1.73 mg/L</td>
<td>Toxic to fish</td>
</tr>
<tr>
<td>Daphnia Toxicity</td>
<td>48 h EC50 = 3.91 mg/L</td>
<td>Toxic to aquatic invertebrates</td>
</tr>
<tr>
<td>Algal Toxicity</td>
<td>72 h EC50 > 6.61 mg/L</td>
<td>Not harmful to algae up to water solubility limit</td>
</tr>
<tr>
<td>Inhibition of Bacterial</td>
<td>3 h EC50 > 100 mg/L</td>
<td>Not inhibitory to microbial respiration</td>
</tr>
</tbody>
</table>

Under the Globally Harmonised System of Classification and Labelling of Chemicals (GHS; United Nations, 2009) the notified chemical is considered to be toxic to fish and aquatic invertebrates. On the basis of its lack of ready biodegradability, the notified chemical is classified ‘Chronic Category 2: Toxic to aquatic life with long lasting effects’.

7.2.1. Predicted No-Effect Concentration

The predicted no-effects concentration (PNEC) has been calculated from the available endpoint for fish. A safety factor of 100 was used given acute endpoints for three trophic levels are available.

<table>
<thead>
<tr>
<th>LC50 (Fish, 96 h)</th>
<th>1.73 mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment Factor</td>
<td>100</td>
</tr>
<tr>
<td>Mitigation Factor</td>
<td>1.00</td>
</tr>
<tr>
<td>PNEC:</td>
<td>17.3 µg/L</td>
</tr>
</tbody>
</table>

7.3. Environmental Risk Assessment

The Risk Quotient (Q = PEC/PNEC) has been calculated based on the predicted PEC and PNEC.

<table>
<thead>
<tr>
<th>Risk Assessment</th>
<th>PEC µg/L</th>
<th>PNEC µg/L</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q – River</td>
<td>0.56</td>
<td>1.73</td>
<td>0.32</td>
</tr>
<tr>
<td>Q – Ocean</td>
<td>0.056</td>
<td>1.73</td>
<td>0.032</td>
</tr>
</tbody>
</table>

The risk quotient for discharge of treated effluents containing the notified chemical to the aquatic environment indicates that the notified chemical is unlikely to reach ecotoxicologically significant concentrations in surface waters, based on its maximum annual importation quantity. The notified chemical has a potential for bioaccumulation. However, the notified chemical is not expected released to surface waters in significant quantities.

On the basis of the PEC/PNEC ratio, maximum annual importation volume and assessed use pattern in cosmetic formulations and household products, the notified chemical is not expected to pose an unreasonable risk to the environment.
APPENDIX A: PHYSICAL AND CHEMICAL PROPERTIES

Melting Point/Freezing Point

- **Method:** OECD TG 102 Melting Point/Melting Range
- **Remarks:** Determined using differential scanning calorimetry
- **Test Facility:** Siemens (2002a)

- **Value:** < -80 °C

Boiling Point

- **Value:** 287 - 288.5 °C at 101.3 kPa

Method: OECD TG 103 Boiling Point
Remarks: Determined using differential scanning calorimetry
Test Facility: Siemens (2002a)

Density

- **Value:** 970 kg/m³ at 20 °C

Method: OECD TG 109 Density of Liquids and Solids
Remarks: Determined using glass pycnometer
Test Facility: Siemens (2002b)

Vapour Pressure

- **Value:** 4.2 × 10⁻³ kPa at 25 °C

Method: OECD TG 104 Vapour Pressure
Remarks: Determined by dynamic method
Test Facility: Siemens (2002a)

Water Solubility

- **Value:** 6.61 x 10⁻³ g/L at 20 °C

Method: OECD TG 105 Water Solubility
Remarks: Column Elution Method
Test Facility: GAB (2003a)

Hydrolysis as a Function of pH

<table>
<thead>
<tr>
<th>pH</th>
<th>T (°C)</th>
<th>t½</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>25</td>
<td>< 1 day</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>> 1 year</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>> 1 year</td>
</tr>
</tbody>
</table>

Remarks: After 5 days under the accelerated conditions of 50 °C the rate of hydrolysis of the test substance was less than 10% at pH 7 and 9. This equates to a half-life at 25 °C of t½ > 1 year. At pH 4, a rapid degradation of the test substance was observed under accelerated conditions of 50 °C. This equates to a half-life at 25 °C of t½ = 16.8 hours. Therefore, under the conditions of the test, the test substance is expected to be hydrolytically stable under neutral and basic conditions. The test substance is expected to hydrolyse slowly under acidic conditions

Test Facility: GAB (2003b)
Partition Coefficient (n-octanol/water)

- **log Pow = 4.51 at 21.5±1 °C**
- **Method**: OECD TG 107 Partition Coefficient (n-octanol/water).
- **Remarks**: Flask Method
- **Test Facility**: GAB (2003c)

Adsorption/Desorption

- **log \(K_{oc} \) = 3.85 – 4.99 at 21.5±1 °C**
- **Method**: OECD TG 121 Estimation of the Adsorption Coefficient on Soil and on Sewage Sludge
- **Remarks**: HPLC method
- **Test Facility**: GAB (2002a)

Flash Point

- **134 °C at 101.3 kPa**
- **Method**: EC Council Regulation No 440/2008 A.9 Flash Point
- **Remarks**: Determined using Pensky Martens apparatus
- **Test Facility**: Siemens (2002c)

Autoignition Temperature

- **235 °C**
- **Method**: EC Council Regulation No 440/2008 A.15 Auto-Ignition Temperature (Liquids and Gases)
- **Test Facility**: Siemens (2002d)
APPENDIX B: TOXICOLOGICAL INVESTIGATIONS

B.1. Acute toxicity – oral

TEST SUBSTANCE Notified chemical (94.9% purity)

METHOD OECD TG 423 Acute Oral Toxicity – Acute Toxic Class Method
- Species/Strain: Rat/Sprague-Dawley/ Crl:CD
- Vehicle: Nil
- Remarks - Method: No protocol deviations.

RESULTS

<table>
<thead>
<tr>
<th>Group</th>
<th>Number and Sex of Animals</th>
<th>Dose (mg/kg bw)</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3M/3F</td>
<td>2,000</td>
<td>0/6</td>
</tr>
</tbody>
</table>

- **LD50**: > 2,500 mg/kg bw
- **Signs of Toxicity**: Diarrhoea was noted in all animals at 4 hours or 1 day observations and all animals appeared normal at the day 2 observation.
- **Effects in Organs**: No abnormalities noted at necroscopy.
- **Remarks - Results**: No unscheduled mortalities occurred during the study. All animals showed expected gains in bodyweight over the observation period.

CONCLUSION The notified chemical is of low acute toxicity via the oral route.

TEST FACILITY SafePharm (2000)

B.2. Acute toxicity – dermal

TEST SUBSTANCE Notified chemical (96.9% purity)

METHOD OECD TG 402 Acute Dermal Toxicity
- Species/Strain: Rat/Sprague-Dawley/Crl:CD
- Vehicle: Nil
- Type of dressing: Semi-occlusive
- Remarks - Method: No protocol deviations.

RESULTS

<table>
<thead>
<tr>
<th>Group</th>
<th>Number and Sex of Animals</th>
<th>Dose (mg/kg bw)</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5M/5F</td>
<td>2,000</td>
<td>0/10</td>
</tr>
</tbody>
</table>

- **LD50**: > 2,000 mg/kg bw
- **Signs of Toxicity - Local**: No signs of local toxicity were noted.
- **Signs of Toxicity - Systemic**: No signs of systemic toxicity were noted.
- **Effects in Organs**: No abnormalities were noted during necroscopy.
- **Remarks - Results**: All treated animals showed expected body weight gain during the observation period.

CONCLUSION The notified chemical is of low acute toxicity via the dermal route.

TEST FACILITY LPT (2002a)
B.3. Irritation – skin

TEST SUBSTANCE: Notified chemical (purity not reported)

METHOD:
- OECD TG 404 Acute Dermal Irritation/Corrosion
- Species/Strain: Rabbit/New Zealand White
- Number of Animals: 3 (2 M and 1 F)
- Vehicle: Nil
- Observation Period: 72 hours
- Type of Dressing: Semi-occlusive
- Remarks - Method: No protocol deviations.

RESULTS

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Mean Score* Animal No.</th>
<th>Maximum Value</th>
<th>Maximum Duration of Any Effect</th>
<th>Maximum Value at End of Observation Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Erythema/Eschar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Nil</td>
</tr>
<tr>
<td>Oedema</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Nil</td>
</tr>
</tbody>
</table>

* Calculated on the basis of the scores at 24, 48, and 72 hours for EACH animal

Remarks - Results: No erythema or oedema was observed in any of the treated animals.

CONCLUSION: The notified chemical is not irritating to the skin.

TEST FACILITY: SafePharm (2001a)

B.4. Irritation – eye

TEST SUBSTANCE: Notified chemical (95.9% purity)

METHOD:
- OECD TG 405 Acute Eye Irritation/Corrosion
- Species/Strain: Rabbit/New Zealand White
- Number of Animals: 2 M and 1 F
- Observation Period: 72 hours
- Remarks - Method: No protocol deviations.

RESULTS

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Mean Score* Animal No.</th>
<th>Maximum Value</th>
<th>Maximum Duration of Any Effect</th>
<th>Maximum Value at End of Observation Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Conjunctiva: redness</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>2**</td>
</tr>
<tr>
<td>Conjunctiva: chemosis</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2**</td>
</tr>
<tr>
<td>Conjunctiva: discharge</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2**</td>
</tr>
<tr>
<td>Corneal opacity</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Iridial inflammation</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Calculated on the basis of the scores at 24, 48, and 72 hours for EACH animal
** at the 1-hour observation

Remarks - Results: Moderate reddening of the conjunctivae (grade 2) was observed in all animals at the 1-hour observation. Slight reddening (grade 1) was observed at the 24-hour observation in all animals.

Moderate chemosis (grade 2) was observed in two animals and slight chemosis (grade 1) was observed in one animal at the 1-hour observation.

Moderate discharge (grade 2) was observed in all animals at the 1-hour observation.
All signs of irritation were resolved at the 48-hour observation.

No abnormal body weight changes were observed during the study.

No clinical signs of systemic toxicity were observed.

CONCLUSION

The notified chemical is slightly irritating to the eye.

TEST FACILITY

SafePharm (2001b)

B.5. Skin sensitisation

TEST SUBSTANCE

Notified chemical (purity not reported)

METHOD

Species/Strain

Guinea pig/Dunkin Hartley/albino

PRELIMINARY STUDY

Maximum Non-irritating Concentration:

intradermal: not determined (moderate erythema noted at 1% and 5%)

topical: 100%

MAIN STUDY

<table>
<thead>
<tr>
<th>Number of Animals</th>
<th>Test Group: 10 M</th>
<th>Control Group: 5 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>Arachis oil</td>
<td></td>
</tr>
<tr>
<td>Positive control</td>
<td>Not conducted in parallel with the test substance, but had been conducted previously in the test laboratory using 2-mercaptobenzothiazole and α-hexylcinnamaldehyde.</td>
<td></td>
</tr>
</tbody>
</table>

INDUCTION PHASE

Induction Concentration:

intradermal: 5%

topical: 100%

Signs of Irritation

Intradermal induction: Discrete or patchy to moderate and confluent erythema was observed at the intradermal induction sites of test group and control group animals.

Topical induction: Discrete or patchy (grade 1) to moderate and confluent erythema (grade 2) was observed at the topical induction sites of test group animals.

Discrete or patchy erythema was observed at the topical induction sites of control group animals.

Four out of 10 animals from test group and one animal from the control group showed bleeding from the intradermal induction site at the 1 hour observation.

CHALLENGE PHASE

1st challenge: topical: 75% and 100%

2nd challenge: not conducted

Remarks - Method: A preliminary study was carried out to select suitable concentrations for induction and challenge.

RESULTS

<table>
<thead>
<tr>
<th>Animal</th>
<th>Challenge Concentration</th>
<th>Number of Animals Showing Skin Reactions after:</th>
<th>1st challenge</th>
<th>2nd challenge*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 h</td>
<td>48 h</td>
</tr>
<tr>
<td>Test Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75%</td>
<td></td>
<td>2</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>100%</td>
<td></td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Control Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75%</td>
<td></td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>100%</td>
<td></td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

*Not conducted
Remarks - Results

No mortality and no clinical signs of toxicity observed in the test animals, with all animals gaining weight during the study.

Discrete or patchy erythema (grade 1) was observed in two test group animals at 75% and in three test group animals at 100% concentration at the 24 hour observation. These skin reactions were not apparent at the 48 hour observation and were therefore not attributed to contact sensitisation by the study authors.

No skin reactions were noted in control group animals at the 24 or 48 hour observations.

The positive control confirmed the sensitivity of the test system.

CONCLUSION

There was no evidence of reactions indicative of skin sensitisation to the notified chemical under the conditions of the test.

TEST FACILITY

SafePharm (2001c)

B.6. Skin sensitisation

TEST SUBSTANCE

Notified chemical (95.9% purity)

METHOD

Species/Strain: Guinea pig/Dunkin Hartley/albino

PRELIMINARY STUDY

Maximum Non-Irritating Concentration:
intradermal: 5%
topical: 100%

MAIN STUDY

Number of Animals: Test Group: 10 M; Control Group: 5 M

Vehicle: Arachis oil

Positive control: Not conducted in parallel with the test substance, but had been conducted previously in the test laboratory using 2-mercaptobenzothiazole and α-hexylcinnamaldehyde.

INDUCTION PHASE

Induction Concentration:
intradermal: 5%
topical: 100%

Signs of Irritation:
Intradermal induction: Discrete or patchy to moderate and confluent erythema was observed at the intradermal induction sites of test group and control group animals.

Topical: Discrete or patchy (grade 1) to moderate and confluent erythema (grade 2) was observed at the topical induction sites of test group animals.

Discrete or patchy erythema was observed at the topical induction sites of control group animals.

One animal showed bleeding from the intradermal injection site.

CHALLENGE PHASE

1st challenge: topical: 75% and 100%
2nd challenge: not conducted

Remarks - Method:
A preliminary study was carried out to select suitable concentrations for induction and challenge.

RESULTS

<table>
<thead>
<tr>
<th>Animal</th>
<th>Challenge Concentration</th>
<th>Number of Animals Showing Skin Reactions after:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1st challenge (24 h, 48 h)</td>
</tr>
<tr>
<td>Test Group</td>
<td>75%</td>
<td>0</td>
</tr>
</tbody>
</table>
No mortality and no clinical signs of toxicity observed in the test animals, with all animals gaining weight during the study.

No signs of skin irritation were observed in the test and control animals.

The positive control confirmed the sensitivity of the test system.

CONCLUSION

There was no evidence of reactions indicative of skin sensitisation to the notified chemical under the conditions of the test.

TEST FACILITY

SafePharm (2001d)

B.7. Repeat dose toxicity

TEST SUBSTANCE

Notified chemical (96.9% purity)

METHOD

OECD TG 407 Repeated Dose 28-day Oral Toxicity Study in Rodents

Species/Strain: Rat/SD/Crl:CD

Route of Administration: Oral – gavage

Exposure Information: Total exposure days: 28 days

Dose regimen: 7 days per week

Post-exposure observation period: 14 days

Vehicle: 0.5% Aqueous hydroxypropyl-methylcellulose gel

Remarks - Method: No significant protocol deviations.

RESULTS

<table>
<thead>
<tr>
<th>Group</th>
<th>Number and Sex of Animals</th>
<th>Dose (mg/kg bw/day)</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>5M/5F</td>
<td>-</td>
<td>0/10</td>
</tr>
<tr>
<td>low dose</td>
<td>5M/5F</td>
<td>100</td>
<td>0/10</td>
</tr>
<tr>
<td>mid dose</td>
<td>5M/5F</td>
<td>300</td>
<td>0/10</td>
</tr>
<tr>
<td>high dose</td>
<td>5M/5F</td>
<td>1,000</td>
<td>0/10</td>
</tr>
<tr>
<td>control recovery</td>
<td>5M/5F</td>
<td>-</td>
<td>0/10</td>
</tr>
<tr>
<td>high dose recovery</td>
<td>5M/5F</td>
<td>1,000</td>
<td>0/10</td>
</tr>
</tbody>
</table>

Mortality and Time to Death

No unscheduled mortality occurred during the study period.

Clinical Observations

Piloerection was observed in all animals treated at 1,000 mg/kg bw/day from day 14 to day 38.

Statistically significant reduction in body weight in males treated at 1,000 mg/kg bw/day was observed from week 1 to week 3. The body weight normalised during the recovery period but remained lower than control animals.

Statistically significant increase in food consumption was observed in both sexes treated at 1,000 mg/kg bw/day in test week 4. Food intake was within the normal range during the recovery period.

Laboratory Findings – Clinical Chemistry, Haematology, Urinalysis

Statistically significant reduction in glucose in males was observed in the 1,000 mg/kg bw/day treatment group.

Effects in Organs

A treatment related increase in absolute and relative liver weights were observed in males and females treated at 300 mg/kg bw/day or 1,000 mg/kg bw/day (statistically significant for the relative liver weights in males at 300 mg/kg bw/day [20.6% increase] and 1,000 mg/kg bw/day [24.1% increase], and in females at 1,000 mg/kg...
bw/day [25.1% increase]). However, no corresponding adverse histopathological changes were observed therefore the liver weight increase was not considered to be toxicologically significant. No influence on the absolute or relative organ weights of male and female animals of the recovery group was noted.

Hyaline droplet formation was observed in the tubular epithelium of males at all dose levels. The study authors attributed this effect to an excessive accumulation of alpha-2-globulin in the P2 segment cells of renal proximal tubules, resulting in droplets formation as a manifestation of protein overload. This phenomenon is rat specific and therefore not relevant to humans.

Remarks – Results
Treatment related mild hyperplasia and hyperkeratosis of the epidermis of the skin of males at 300 mg/kg bw/day, and mild hyperplasia and hyperkeratosis of the epidermis of the skin and fore-stomach epithelium of female rats at 300 mg/kg bw/day and 1,000 mg/kg bw/day were observed.

None of the animals of the recovery group revealed any delayed treatment related effects.

CONCLUSION
The No Observed Adverse Effect Level (NOAEL) was established as > 1,000 mg/kg bw/day in this study, based on the absence of toxicologically significant effects at any of the doses administered.

TEST FACILITY
LPT (2003a)

B.8. Genotoxicity – bacteria

TEST SUBSTANCE
Notified chemical (96.9% purity)

METHOD
OECD TG 471 Bacterial Reverse Mutation Test
Plate incorporation procedure (Test 1) and Pre incubation procedure (Test 2)

Species/Strain
Salmonella typhimurium: TA1535, TA1537, TA98, TA100 and TA102

Metabolic Activation System
S9 fraction from Aroclor 1254 induced rat liver

Concentration Range in Main Test
a) With metabolic activation: 0.006 – 0.6 µg/plate
b) Without metabolic activation: 0.006 – 0.6 µg/plate

Vehicle
Dimethyl sulfoxide (DMSO)

Remarks - Method
A plate incorporation preliminary test at a concentration range of 0.006 – 200 µg/plate was conducted with tester strain TA100 only.

Negative control: DMSO
Positive control:
With metabolic activation: 2-anthraceneamide (TA98, TA102 and TA1537) and cyclophosphamide (TA100 and TA1535)
Without metabolic activation: sodium azide (TA1535 and TA100), 2-nitro-fluorene (TA98), 9-amino-acridine (TA1537) and methyl methane sulfonate (TA102).

No significant protocol deviations.

RESULTS

<table>
<thead>
<tr>
<th>Metabolic Activation</th>
<th>Test Substance Concentration (µg/plate) Resulting in:</th>
<th>Cytotoxicity in Preliminary Test</th>
<th>Cytotoxicity in Main Test</th>
<th>Precipitation</th>
<th>Genotoxic Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent</td>
<td></td>
<td>≥ 0.6</td>
<td>0.6</td>
<td>> 0.6</td>
<td>Negative</td>
</tr>
<tr>
<td>Test 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td></td>
<td>≥ 0.6</td>
<td>0.6</td>
<td>> 0.6</td>
<td>Negative</td>
</tr>
<tr>
<td>Test 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks - Results
In Test 1 (in the absence and presence of metabolic activation)
Cytotoxicity was observed in TA100, TA1535 and TA1537 at 0.6 µg/mL.

In Test 2 (in the absence of metabolic activation) cytotoxicity was observed in TA1537 at 0.6 µg/mL and in the presence of metabolic activation in TA100 at 0.6 µg/mL.

No significant increases in the frequency of revertant colonies were recorded for any of the strains of bacteria, at any dose level either with or without metabolic activation.

The positive and negative controls gave satisfactory responses confirming the validity of the test system.

CONCLUSION

The notified chemical was not mutagenic to bacteria under the conditions of the test.

TEST FACILITY

LPT (2002b)

B.9. Genotoxicity – in vitro mammalian chromosome aberration test

TEST SUBSTANCE

Notified chemical (96.9% purity)

METHOD

OECD TG 473 In vitro Mammalian Chromosome Aberration Test

Species/Strain

Human

Cell Type/Cell Line

Peripheral blood lymphocytes

Metabolic Activation System

S9 mix from Aroclor 1254 induced rat liver

Vehicle

DMSO

Remarks - Method

Negative control: DMSO

Positive control:

without metabolic activation – mitomycin C

with metabolic activation - cyclophosphamide

<table>
<thead>
<tr>
<th>Metabolic Activation</th>
<th>Test Substance Concentration (µg/mL)</th>
<th>Exposure Period</th>
<th>Harvest Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test 1</td>
<td>7.5, 15.0*, 37.5*, 75.0* and 150.0</td>
<td>4 h</td>
<td>24 h</td>
</tr>
<tr>
<td>Test 2</td>
<td>7.5*, 15.0*, 37.5*, 75.0* and 150.0</td>
<td>24 h</td>
<td>24 h</td>
</tr>
<tr>
<td>Present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test 1</td>
<td>7.5, 15.0*, 37.5*, 75.0* and 150.0</td>
<td>4 h</td>
<td>24 h</td>
</tr>
</tbody>
</table>

*Cultures selected for metaphase analysis.

RESULTS

<table>
<thead>
<tr>
<th>Metabolic Activation</th>
<th>Cytotoxicity in Preliminary Test</th>
<th>Cytotoxicity in Main Test</th>
<th>Precipitation</th>
<th>Genotoxic Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent</td>
<td></td>
<td>≥ 75</td>
<td>> 150</td>
<td>Negative</td>
</tr>
<tr>
<td>Test 1</td>
<td></td>
<td>≥ 100</td>
<td>≥ 75</td>
<td>Negative</td>
</tr>
<tr>
<td>Test 2</td>
<td>150</td>
<td>≥ 75</td>
<td>≥ 150</td>
<td>Negative</td>
</tr>
<tr>
<td>Present</td>
<td></td>
<td>≥ 100</td>
<td>150</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Remarks - Results

In all tests, high cytotoxicity was observed in cells treated at 150 µg/mL.

Increases in chromosomal aberrations outside the normal range of 0 - 5.0% were observed without metabolic activation at 150 µg/mL in Test 1 (8.4%) and at 75 µg/mL in Test 2 (6.9%). However these results were considered as artefacts by the study authors due to the high cytotoxicity at these test concentrations. Only 12 of 200 and 117 of 200 metaphases could be
analysed, respectively, at mitotic indices of 0.05 and 0.39.

No significant increases in chromosomal aberrations were observed at all other test concentrations either with or without metabolic activation.

The positive controls gave satisfactory responses, confirming the validity of the test system.

CONCLUSION

The notified chemical was not clastogenic to human peripheral blood lymphocytes treated *in vitro* under the conditions of the test.

TEST FACILITY

LPT (2003b)
APPENDIX C: ENVIRONMENTAL FATE AND ECOTOXICOLOGICAL INVESTIGATIONS

C.1. Environmental Fate

C.1.1. Ready biodegradability

TEST SUBSTANCE: Notified chemical (94.9% purity)

METHOD: OECD TG 301 D Ready Biodegradability: Closed Bottle Test

<table>
<thead>
<tr>
<th>Inoculum</th>
<th>Activated sewage sludge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure Period</td>
<td>28 days</td>
</tr>
<tr>
<td>Auxiliary Solvent</td>
<td>None</td>
</tr>
<tr>
<td>Analytical Monitoring</td>
<td>Theoretical Oxygen Demand (ThOD)</td>
</tr>
<tr>
<td>Remarks - Method</td>
<td>The test was conducted in accordance with the test guideline above, with no significant deviation in protocol reported.</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Test substance</th>
<th>Toxicity control</th>
<th>Sodium benzoate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>% Degradation</td>
<td>Day</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>7</td>
<td>11.2</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>28.7</td>
<td>14</td>
</tr>
<tr>
<td>21</td>
<td>24.0</td>
<td>21</td>
</tr>
<tr>
<td>28</td>
<td>24.8</td>
<td>28</td>
</tr>
</tbody>
</table>

Remarks - Results
All validity criteria for the test were satisfied. The percentage degradation of the reference compound attained the threshold level of > 60% by 8 days. Therefore, the tests indicate the suitability of the inoculum. The percentage degradation of the toxicity control surpassed the threshold level of 25% by 21 days (65.2% in 28 days), showing that toxicity was not a factor inhibiting the biodegradability of the test substance.

The degree of degradation of the test substance after 28 days was 24.8%. Therefore, the test substance is not considered to be readily biodegradable according to the OECD (301 D) guideline.

CONCLUSION
The notified chemical is not readily biodegradable.

TEST FACILITY: GAB (2001)

C.2. Ecotoxicological Investigations

C.2.1. Acute toxicity to fish

TEST SUBSTANCE: Notified chemical (purity not reported)

METHOD: OECD TG 203 Fish, Acute Toxicity Test – Semi Static

<table>
<thead>
<tr>
<th>Species</th>
<th>Zebra Fish (Brachydanio rerio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure Period</td>
<td>96 hours</td>
</tr>
<tr>
<td>Auxiliary Solvent</td>
<td>None</td>
</tr>
<tr>
<td>Water Hardness</td>
<td>250 mg CaCO₃/L</td>
</tr>
<tr>
<td>Analytical Monitoring</td>
<td>High Pressure Liquid Chromatography (HPLC)</td>
</tr>
<tr>
<td>Remarks – Method</td>
<td>Due to low solubility of the test substance in water, a super saturated dispersion of the test substance with a loading rate of 100 mg was stirred for one hour and filtered through 0.45µm membrane. The filtrate was used as a test medium.</td>
</tr>
</tbody>
</table>

RESULTS
<table>
<thead>
<tr>
<th>Concentration mg/L</th>
<th>Number of Fish</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal</td>
<td>Actual</td>
</tr>
<tr>
<td>Control</td>
<td>Control</td>
<td>10</td>
</tr>
<tr>
<td>1.25</td>
<td>0.88</td>
<td>10</td>
</tr>
<tr>
<td>2.0</td>
<td>1.39</td>
<td>10</td>
</tr>
<tr>
<td>3.15</td>
<td>1.75</td>
<td>10</td>
</tr>
<tr>
<td>5.0</td>
<td>2.56</td>
<td>10</td>
</tr>
<tr>
<td>7.9</td>
<td>3.84</td>
<td>10</td>
</tr>
</tbody>
</table>

LC50 1.73 mg/L at 96 hours (95% confidence limit of 1.61-1.87 mg/L). The data analysis was conducted using the Trimmed Spearman-Karber (Version 5) for calculating toxicity values and 95% confidence limit.

Remarks – Results All validity criteria for the test were satisfied. The test solutions were renewed every 24 hours during the test period. The actual concentration of the test substance was measured every 24 hour. The 96 h LC50 for fish were determined to be 1.73 mg/L, based on the measured concentrations.

CONCLUSION The notified chemical is toxic to fish.

TEST FACILITY SAES (2010)

C.2.2. Acute toxicity to aquatic invertebrates

TEST SUBSTANCE Notified chemical (96.9% purity)

METHOD OECD TG 202 Daphnia sp. Acute Immobilisation Test – Semi-static.
Species *Daphnia magna*
Exposure Period 48 hours
Auxiliary Solvent Acetone
Water Hardness 140 - 268 mg CaCO$_3$/L
Analytical Monitoring Gas Chromatography (GC)
Remarks - Method The test substance was dissolved in acetone due to its low solubility in water. This was followed by diluting the solution in test medium. The definitive test was conducted at the concentration of 0.093, 1.49, 2.38, 6.1, 9.77, 15.6 and 25 mg/L of the test substance. The test was conducted in accordance with the test guideline above, with no significant deviation in protocol reported.

RESULTS

<table>
<thead>
<tr>
<th>Concentration mg/L</th>
<th>Number of D. magna</th>
<th>Cumulative Immobilised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>24 h</td>
<td>48 h</td>
</tr>
<tr>
<td>Control</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Solvent Control</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>0.93</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>1.49</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>2.38</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>3.81</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>6.1</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>9.77</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>15.6</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>19</td>
</tr>
</tbody>
</table>

EC50 3.91 mg/L at 48 hours (Calculated by Probit analysis)

Remarks - Results All validity criteria for the test were satisfied. The test solutions were renewed every 24 hours during the test period. The initial content of the test substance was 80.6 - 102 % of nominal at all concentrations. The
concentration of the test substance decreased over the entire period of the test, most likely to be related to the volatility of the test substance from water. Therefore, the results are based on measured concentrations. The actual concentrations of the test substance were measured every 24 hours during the 48 h test period. The 48 h EC50 was determined to be 3.91 mg/L, based on the average measured concentration.

CONCLUSION
The notified chemical is considered to be toxic to aquatic invertebrates

TEST FACILITY
GAB (2003d)

C.2.3. Algal growth inhibition test

TEST SUBSTANCE
Notified chemical (96.9% purity)

METHOD
OECD TG 201 Freshwater Alga and Cyanobacteria, Growth Inhibition Test.
Species
Desmodesmus subspicatus (green alga)
Exposure Period
72 hours
Concentration Range
Actual: 1.25, 2.5, 5, 10, 20, 40 and 80 mg/L
Auxiliary Solvent
Acetone
Water Hardness
Not reported
Analytical Monitoring
GC
Remarks - Method
The test substance was dissolved in acetone due to its low solubility in water. This was followed by diluting the solution in test medium. The test was conducted in accordance with the test guideline above, with no significant deviation in protocol reported.

RESULTS

<table>
<thead>
<tr>
<th></th>
<th>Biomass</th>
<th></th>
<th>Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EC50 mg/L at 48 h</td>
<td>NOEC mg/L</td>
<td>EC50 mg/L at 48 h</td>
</tr>
<tr>
<td>Remarks - Results</td>
<td>> 6.61</td>
<td>4.83</td>
<td>> 6.61</td>
</tr>
</tbody>
</table>

Remarks - Results
The growth factor of cell numbers, measured in the control between 0 h and 72 h was found to be 176.30. The test, therefore, fulfills this validity criterion.

The concentration of the test substance decreased over the entire period of the test, most likely to be related to the volatility of the test substance from water. The average measured concentration variance was 33% compared to the nominal concentration. Therefore, the results are based on average measured concentrations. The actual average measured concentrations of the test substance were measured every 24 hours during the test period. The 72 h EC50 and NOEC for algae were determined to be > 6.61 mg/L and 4.83 mg/L, respectively, based on the average measured concentrations.

CONCLUSION
The notified chemical is not considered to be harmful to algae up to the limit of its solubility in water.

TEST FACILITY
GAB (2003e)
C.2.4. Inhibition of microbial activity

<table>
<thead>
<tr>
<th>TEST SUBSTANCE</th>
<th>Notified chemical (96.9% purity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>METHOD</td>
<td>OECD TG 209 Activated Sludge, Respiration Inhibition Test.</td>
</tr>
<tr>
<td>Inoculum</td>
<td>Activated sewage sludge</td>
</tr>
<tr>
<td>Exposure Period</td>
<td>3 hours</td>
</tr>
<tr>
<td>Concentration Range</td>
<td>Nominal: 1.02 and 100 mg/L</td>
</tr>
<tr>
<td>Actual: Not determined</td>
<td></td>
</tr>
<tr>
<td>Remarks – Method</td>
<td>The test was conducted in accordance with the test guideline above, with no significant deviation in protocol reported. The test substance was dissolved in acetone due to its low solubility in water. This was followed by diluting the solution in test medium. 3,5-Dichlorophenol was used as the reference control. The respiration rate was determined by measurement of Biochemical Oxygen Demand during the test after 30 minutes and 3 hours of exposure.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESULTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EC50</td>
<td>> 100 mg/L at 3 hours</td>
</tr>
<tr>
<td>NOEC</td>
<td>Not determined</td>
</tr>
<tr>
<td>Remarks – Results</td>
<td>The EC50 value for reference control was in the range between 5 and 30 mg/L alter 30 min and 3 hours. The test, therefore, fulfils the validity criterion. The 3 h EC50 was determined to be > 100 mg/L, based on the nominal concentration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONCLUSION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The notified chemical is not inhibitory to microbial respiration up to the limit of its solubility in water.</td>
<td></td>
</tr>
</tbody>
</table>

| TEST FACILITY | GAB (2002b) |

Earnest, C.W., Jr. (2009) A Two-Zone Model to Predict Inhalation Exposure to Toxic Chemicals in Cleaning Products, MSCEng thesis, The University of Texas at Austin

LPT (2002a) Acute Toxicity Study of F-1135 in Sprague-Dawley Rats by Dermal Administration (Report No. 15222/01, May, 2002). Hamburg, Germany, Laboratory of Pharmacology and Toxicology KG (Unpublished report submitted by the notifier).

LPT (2002b) Mutagenicity Study of F-1135 in the Salmonella typhimurium Reverse Mutation Assay (In Vitro) (Project No. 15225/01, May, 2002). Hamburg, Germany, Laboratory of Pharmacology and Toxicology KG (Unpublished report submitted by the notifier).

LPT (2003a) 28-Day Subchronic Toxicity Study of F-1135 in Sprague-Dawley Rats by Repeated Oral Administration (Project No. 15224/01, March, 2003). Hamburg, Germany, Laboratory of Pharmacology and Toxicology KG (Unpublished report submitted by the notifier).

LPT (2003b) In Vitro Assessment of the Clastogenic Activity of F-1135 in Cultured Human Peripheral Lymphocytes (Project No. 15226/01, March, 2003). Hamburg, Germany, Laboratory of Pharmacology and Toxicology KG (Unpublished report submitted by the notifier).

Siemens (2002a) Melting Point/Melting Range/Boiling Point/Boiling Range Vapour Pressure (Project No. 20011534.01, March, 2002). Frankfurt, Germany, Siemens Axiva GmbH & Co. KG (Unpublished report submitted by the notifier).

Siemens (2002c) Flash Point (Project No. 20011534.04, February, 2002). Frankfurt, Germany, Siemens Axiva GmbH & Co. KG (Unpublished report submitted by the notifier).

